
RTEMS
Information Brochure

Image Credit: ESA-Pierre Carril

Table of contents

RTEMS in a nutshell ...1

Why RTEMS? ...2

Why Open Source? ...3

RTEMS features ..3

RTEMS SMP features ...6

ECSS Qualification ..7

Our RTEMS support service ...8

embedded brains driven RTEMS activities ...9

embedded brains‘ cooperation partners .. 10

RTEMS in a nutshell

Open Source
	 •	 Code	transparency
	 •	 Independent	in	use
	 •	 No	royalities

Safety Qualifiable
	 •	 ECSS	Space	qualified	(Cat.C,	tailored	Cat.B)
	 •	 Automated	Test	Suite
	 •	 100%	code	and	branch	coverage

Well established
	 •	 Continuously	developed	for	over	30	years
	 •	 Broad	range	of	BSPs,	interfaces	and	drivers
	 •	 Used	in	various	industries

Multicore Performance
	 •	 Symmetrical	Multiprocessing	(SMP)	
	 		 using	2	to	24	cores
	 •	 High	performance
	 •	 OS	operating	with	less	than	100KB	of	memory

1

NASA	
Perseverance

Mars Rover

BMW
high	speed
data	logger

E&K	Automated
Guided Vehicles

G+D	high-
performance
banknote
processing	
system

Why RTEMS

RTEMS	is	a	commercial	grade	Open-Source	„hard“	real-time	OS	with	high	flexibility,	permitting	
minimal	resource	demands	and	maximum	performance,	particularly	on	small	and	medium-
size	systems.	It	is	available	for	a	broad	range	of	processors	and	provides	all	common	interfaces	
and	drivers	for	embedded	requirements.	Originally	designed	more	than	25	years	ago	for	military							
purposes,	the	single-core	version	was	replaced	with	a	SMP	multi-core-version	(using	Symmetric							
Multiprocessing)	in	2015.

	 •	 Minimal	resource	demand
	 •	 A	safety-qualified	multicore	realtime	OS	that	can	be	operated	with	50KB	of	memory
	 •	 BSPs	are	available	for	most	16-,	32-	and	64-bit	embedded	processors
	 			(incl	12/24-core	QorIQ	T4240	and	RISC-V	architecture)
	 •	 Advanced	features:	POSIX	and	Classic	API	interface,	OpenMP	support,	C11/C++11	threading
	 	 and	synchronization	support,	Flattened	Device	Tree	(FDT)	support	
	 	 and	10	Gbit/s	Ethernet	code	quality
	 •	 The	SMP	core	code	and	selected	features	are	safety	qualified	for	the	Space	Domain
	 •	 Independency,	sustainability,	maintenance	and	compatibility	provided	by	a	long-standing	
	 	 user	community,	while		users	enjoy	freedom	of	choice	and	liberal	license	conditions	
	 	 without	royalties

Why choose carefully?

There	are	numerous	RTOS	available.	Apart	from	the	decision	between	commercial	and	open-source	
software	you	should	consider	further	aspects.

	 •	 Choose	the	right	„sized“	OS:	A	simple	OS	will	be	fast	to	get	into	but	may	reach	its	
	 	 limits	soon.	This	often	becomes	a	blocking	point	in	a	progressed	state	of	a	project.	
	 	 Choosing	a	very	extensive	OS	may	avoid	this	problem	but	will	require	many	years	of		 	
	 	 expertise	(and	possibly	consume	excessive	system	resources).
	 	 Hence,	a	scalable	OS	with	many	options	may	be	the	best	choice.	For	safety
	 	 critical	applications	it	is	important	to	consider	that	the	qualification	effort	increases	
	 	 exponentially	with	code	complexity.	In	case	software	packages	need	to	be	qualified	it	is		 	
 vital to keep the code size as small as possible.

	 •	 Consider	your	time	investment:	Getting	highly	experienced	with	an	OS	requires	a	lot	of	
	 	 time.	A	scalable	OS	that	can	be	used	for	many	different	projects	is	way	more	efficient		 	
	 	 compared	to	using	a	best-fit	OS	for	each	individual	project.	This	is	true	for	RTEMS		 	
	 	 that	can	be	assembled	for	tiny	systems	with	some	10kB	of	RAM	as	well	as	for	massive	
	 	 24-core	systems	with	10GB	Ethernet	etc.

2

Why Open Source

Advantages
	 •	 No	royalties
	 •	 Getting	easily	started	without	paperwork
	 •	 100%	transparent	source	code	for	debugging	and	interfacing
	 •	 Product	support	alternatively	provided	by	supportive	community	or	commercial	providers
	 •	 No	dependency	on	a	supplier‘s	business	model
	 •	 No	forced	updates	driven	by	a	supplier

Implications
	 •	 The	roadmap	is	dependent	on	software	development	volunteers,	hence	it	may	become	
	 			 difficult	to	address	strategic	investments	and	due	dates
	 •	 No	active	marketing	is	provided,	hence	customer	contact	and	product	information
	 	 is	not	as	intrusive	as	for	commercial	software
	 •	 License	conditions	may	imply	restrictions	for	own	source	code	and	for	re-use	of	shared	code

Challenges
	 •	 The	effort	required	for	creating	new	functions	or	interfaces	is	widely
	 	 underestimated,	in	particular	for	complex	software	packages
	 •	 The	creation	of	a	„private“	version	will	become	outdated	as	the	public	code	will	evolve
	 	 over	time.	Re-merging	the	private	code	version	into	the	public	code	will	become		 	 	
	 	 increasingly	expensive
	 •	 The	effort	needed	for	code	maintenance	of	the	community	version	is	often			 	 	
			 	 underestimated,	in	particular	for	large	software	packages	with	dozens	of	patches	
	 			 being	published	daily

Benefits of professional support
	 •	 Minimization	of	risks	and	optimization	of	maintenance	support
	 •	 Synchronization	with	recent	fixes	and	improvements	of	the	main	line
	 •	 Focus	on	own	development

RTEMS features

Supported Architectures
	 •	 ARMv7-ARM	(with	SMP	support)
	 •	 Xilinx	Zynq
	 •	 Altera/Intel	Cyclone/Arria
	 •	 NXP	i.MX7
	 •	 STMicroelectronics	STM32
	 •	 NXP	LPC
	 •	 Atmel/Microchip	SAM	E70/S70/V70/V71
	 •	 Raspberry	Pi
	 •	 Texas	Instruments	TMS570
	 •	 ARMv8-AR	(with	SMP	support)

3

 •	 Xilinx	UltraScale+
	 •	 PowerPC	32	and	64	bit	(with	SMP	support)
	 •	 NXP	QorIQ	and	many	more
	 •	 SPARC/LEON	(with	SMP	support)
	 •	 Gaisler,	for	example	GR712RC	and	GR740	(with	SMP	support)
	 •	 RISC-V	32	and	64	bit	(with	SMP	support)
	 •	 Xilinx	MirocBlaze
	 •	 Altera/Intel	Nios	II
	 •	 and	several	legacy	architectures

Features
	 •	 OpenMP	(via	the	GCC	provided	libgomp)
	 •	 LibBSD	provides	networking	stack,	USB,	SD,	WLAN,	IPSec	support	as	well	as	
 additional drivers
	 •	 Dynamic	Host	Configuration	Protocol	(DHCP)	daemon
	 •	 File	Transfer	Protocol	(FTP)	as	file	system	client	and	daemon
	 •	 Trivial	File	Transfer	Protocol	(TFTP)	file	system	client
	 •	 Telnet	daemon
	 •	 PCIe
	 •	 NVMe
	 •	 Very	small	memory	footprint	(20-100KB	for	core	services)	
	 •	 Peripheral	Component	Interconnect	(PCI)	bus	support
	 •	 Thread	synchronization	and	communication

File systems
	 •	 IMFS
	 •	 FAT
	 •	 RFS
	 •	 NFSv2
	 •	 JFFS2	(NOR	flashes)
	 •	 YAFFS2	(NAND	flashes,	GPL	or	commercial	license	required)

Device Drivers
	 •	 Termios	(serial	interfaces)
	 •	 I2C	(Linux	user-space	API	compatible)
	 •	 SPI	(Linux	user-space	API	compatible)
	 •	 Network	stacks	(legacy,	libbsd,	lwIP)
	 •	 USB	stack	(libbsd)
	 •	 SD/MMC	card	stack	(libbsd)
	 •	 Framebuffer	(Linux	user-space	API	compatible,	Qt)

Thread synchronization and communication
	 •	 Mutexes	with	and	without	locking	protocols
	 •	 Counting	semaphores
	 •	 Binary	semaphores
	 •	 Condition	variables
	 •	 Events
	 •	 Message	queues
	 •	 Barriers
	 •	 Futex	(used	by	OpenMP	barriers)
	 •	 Epoch	Based	Reclamation	(libbsd)	

4

Locking Protocols
	 •	 Immediate	Ceiling	Priority	Protocol	(ICPP)
	 •	 Priority	Inheritance	Protocol
	 •	 Multiprocessor	Resource	Sharing	Protocol	(MrsP)
	 •	 O(m)	Independence-Preserving	Protocol	(OMIP)

Uniprocessor Schedulers
	 •	 Deterministic	Priority	Scheduler
	 •	 Simple	Priority	Scheduler
	 •	 Earliest	Deadline	First	Scheduler
	 •	 Constant	Bandwidth	Server	Scheduling	(CBS)

Clustered Schedulers (SMP feature)
	 •	 Flexible	link-time	configuration
	 •	 Job-level	fixed-priority	scheduler	(EDF)	with	support	for	one-to-one	and	one-to-all	
	 	 thread	to	processor	affinities	(default	SMP	scheduler)	
	 •	 Fixed	Priority	SMP	Scheduler
	 •	 Arbitrary	Processor	Affinity	Priority	SMP	Scheduler	(proof	of	concept)

Supported Languages
	 •	 ADA	(not	on	lm32	nor	sh)
	 •	 C	(GCC)	/	C++	(GNU	C++)
	 •	 Erlang
	 •	 Fortran	(not	on	i386,	lm32,	m68k,	mips,	riscv,	sh,	sparc	nor	sparc64)
	 •	 OpenMP	4.5
	 •	 Python	and	MicroPython

API Support
	 •	 RTEMS	Classic	API
	 •	 POSIX	API	
	 •	 High	Performance	API

RTEMS Classic API
	 •	 Chains
	 •	 Tasks
	 •	 Semaphores
	 •	 Message	Queues
	 •	 Events
	 •	 Barriers
	 •	 Interrupts
	 •	 Red-Black	Trees
	 •	 Signals
	 •	 Time/Clock
	 •	 Timers
	 •	 Rate	Monotonic	Periods
	 •	 Fixed	Allocation	Memory	Pools
	 •	 Variable	Allocation	Memory	Pools
	 •	 Various	Locking	Protocols
	 •	 Various	Schedulers

5

Development Platforms
	 •	 GNU/Linux	distributions	
	 •	 FreeBSD	and	NetBSD	
	 •	 Windows	
	 •	 Mac	OS

RTEMS SMP features
SMP	machines	consist	of	a	set	of	processors	(players)	attached	to	a	common	memory	(field).

Clustered Scheduling
	 •	 Independent	scheduler	instances	for	processor	subsets	(cache	topology)
	 •	 Flexible	link-time	configuration
	 •	 Fixed-priority	scheduler
	 •	 Job-level	fixed-priority	scheduler	(EDF)

Locking Protocols for Mutual Exclusion
	 •	 Fine	grained	locking	(Big	Kernel	Lock	removed)
	 •	 Transitive	priority	inheritance
	 •	 O(m)	Independence-Preserving	Protocol	(OMIP)
	 •	 Priority	ceiling
	 •	 Multiprocessor	Resource-Sharing	Protocol	(MrsP)

Lock-Free Timestamps
	 •	 Scalable	timer	implementation	e.g.	based	on	red-black	trees
	 •	 Thread	operation	timeouts	use	current	processor
	 •	 Timer	use	dedicated	processor	set	during	timer	creation
	 •	 Each	processor	has	its	own	data	set	to	maintain	timers

BSPs supporting SMP
	 •	 SPARC	(1	to	4	cores):	GR712C	and	GR740
	 •	 PowerPC	(1	to	24	cores):	QorIQ	(e.g.	P1020,	P2020,	T2080,	T4240)
	 •	 ARMv7-A	(1	to	4	cores):	Altera	Cyclone	V,	Xilinx	Zynq,	Raspberry	Pi2
	 •	 RISC-V

6

ECSS Qualification

Qualification of Open Source software

Re-qualification	is	required	for	any	code	change
	 •	 Most	flexible	and	efficient	qualification	process
	 •	 Automated	testing	and	document	generation	(as	far	as	feasible)
	 •	 Code	for	qualification	is	based	on	RTEMS	main	line

Automated Document generation

RTEMS	code	is	Open-	Source,	
maintained by a community of
volunteers:
	 •	many	configurations
	 •	many	patches	/	updates

=> very dynamic

Qualification	is	a	labor-
intensive process to be
integrally	performed	for	a
set	software	package.

=> very static

Analyze
Inputs

Generate
Text	Snippets

Manually	written
Document
Sources

Text
Substitution

Generated
Document
Sources

Sphinx

HTML PDF

Configuration

Build	Log-Files

Test Results

Coverage	Results

Static	Analyzer

...

7

Used Technologies
	 •	 Debian	10	–	Build	and	usage	environment	for	QDPs
	 •	 Python	3	–	For	Qualification	Tool	Chain	and	all	scripts
	 •	 Pytest	–	Test	framework	for	Python	code
	 •	 C,	Assember	and	WAF	as	build	system	–	To	build	RTEMS	from	sources
	 •	 GCC	tools	–	Development	tools	(compiler,	linker,	…)
	 •	 RTEMS	Source	Builder	–	To	build	cross	compiler,	linker,	etc.
	 •	 RTEMS	Test	Framework	–	For	unit-,	validation-	and	performance	tests
	 •	 YAML	–	For	configuration	files	and	other	input	data
	 •	 Doxygen	–	For	source	code	documentation	and	“tags”	as	input	for	traceability
	 •	 Sphinx	&	LaTeX	–	Documentation	generation
	 •	 Git/GitLab	–	Source	code	management
	 •	 Coverity,	CppCheck,	CLANG	–	Static	code	analyzers
	 •	 GCOV/GCOVR	–	Coverage	analyzer
	 •	 Metrix++	–	Code	metrics	analyzer

Verification activities performed
 •	 Static	code	checker	results	form	Coverity,	CLANG,	and	CppCheck
	 •	 Product	and	process	metrics
	 •	 Assessment	of	testing	and	validation	activities
	 •	 Problem	and	none-conformance	reports
	 •		 Code	&	branch	coverage	100%

 ECSS Pre-Qualification for Cat. C using API
 Subset according to „Space Profile“
 (Cat. B pending)

8

Our RTEMS support services

Working	with	RTEMS	since	1997	we	provide	efficient	and	professional	services	to	our	customers.	
Using	our	deep	experience	with	RTEMS	will	save	you	time	and	help	you	focussing	on	your
development.

Training
	 •	 RTEMS	Application	Development
	 •	 RTEMS	Symmetrical	Multiprocessing	(SMP)
	 •	 RTEMS	Safety	Qualification

Software Engineering (fixed price)
	 •	 Board-Support-Packages	(BSPs)
	 •	 Drivers
	 •	 Implementation	of	compilers	and	developments	tools
	 •	 Modules	and	application	software

Support Packages (hourly based)
	 •	 Answer	to	upcoming	questions,
	 •	 Identify	bugs	and	work	out	patches,
	 •	 Help	out	with	tooling	and	configuration,
	 •	 Support	programming,	particularly	for	RTEMS	interfacing

Qualification Data Packages for different processors
	 •	 Gaisler	GR712RC	and	Gr740	(SPARC	V8)
	 •	 DAHLIA	(ARM	Cortex-R52)
	 •	 Xilinx	Zynq	(ARM	Cortex-A9)
	 •	 Gaisler	Noel-V	(RISC-V)
	 •	 Gaisler	LEON5	(SPARC	V8)

Extensions of Qualification Data Packages
	 •	 POSIX	API	(mutex,	semaphore,	condition	variables,	threads,	message	queue)
	 •	 OpenMP
	 •	 lwIP
	 •	 High-level	Device	Drivers	(e.g.	CAN,	SpaceWire,	MIL-STD-1553)
	 •	 NASA	cFS
	 •	 Scheduling	Tools	(Tracing,	Analysis)

Qualification Support for application software
	 •	 Testing	and	preparing	qualification	documents	for	ECSS

Independent Software Verification and Validation (ISVV)
	 •	 Required	for	ECSS	Cat.	B	and	Cat.	A	qualification

9

embedded brains driven RTEMS activities

	 •	 1995:	first	system	development	based	on	RTEMS

	 •	 2005:	first	RTEMS	class	in	munich

	 •	 Since	2005:	Adaption	of	RTEMS	to	many	architectures	and	controllers

	 •	 Since	2006:	member	of	the	RTEMS	steering	committee

	 •	 2012:	Integration	of	USB	support

	 •	 2014:	Integration	of	improved	network	stack		with	IPv6	support	etc.

	 •	 2015:	Development	of	RTEMS	SMP	support	(for	ESA	multicore	SPARC)

	 •	 2017:	Hypervisor	concepts	and	testing	for	space	industry

	 •	 2021:	Space	qualification	for	RTEMS	SMP	(ECSS)

embedded brains cooperation partners

10

embedded brains GmbH & Co. KG
Dornierstr.	4
82178 Puchheim
Germany

+49-(0)89-189	47	41-00
rtems@embedded-brains.de
www.embedded-brains.de

